1、数控加工工序的划分有哪些?
在数控车削中心上加工零件,工序比较集中,一次装夹应尽可能完成全部工序,常用的工序划分原则有以下两种。
A、保证精度原则
数控加工具有工序集中的条件,粗、精加工常在一次装夹中完成,以保证零件的加工精度,当热变形和切削力变形对零件的加工精度影响较大时,应将粗、精加工分开进行。
B、提高生产效率的原则
数控加工中,为减少换刀次数,节省换刀时间,应将需用同一把刀加工的加工部位全部完成后,再换另一把刀来加工其它部位。同时应尽量减少空行程,用同一把刀加工工件的多个部位时,应以短的路线到达各加工部位。实际生产中,数控加工常按刀具或加工表面划分工序。
2、车刀刀位点的选择
数控加工中,数控程序应描述出刀具相对于工件的运动轨迹。在数控车削中,工件表面的形成取决于运动着的刀刃包络线的位置和形状,但在程序编制中,只需描述刀具系统上某一选定点的轨迹即可。刀具的刀位点即为在程序编制时,刀具上所选择的代表刀具所在位置的点,程序所描述的加工轨迹即为该点的运动轨迹。
在数控车削中心中,从理论上讲可选择刀具上任意一点作为刀位点,但为了方便编程和保证加工精度,刀位点的选择有一定的要求和技巧。
在数控加工中,刀位点的选择一般遵循以下规则:立铣刀应是刀具轴线与刀具底面的交点;球头铣刀是球头的球心;钻头应是钻尖;车刀应是假想刀尖或刀尖圆弧中心 。
刀具刀位点在选择时应注意:
A·选择刀具上能够直接测量的点,刀位点与刀具长度预调时的测定点应尽量一致;
B·在可能的情况下,刀位点应直接与精度要求较高的尺寸或难于测量的尺寸发生;
C·所选择的刀位点能使刀具极限位置直接体现于程序的运动指令中;
D·编程人员应有习惯性的刀位点选择方法,不宜多变;
E·所选定的刀位点,在刀具调整图中应以图形标示。
3、分层切削时刀具的终止位置
当某外圆表面的加工余量较多需分层多次走刀切削时,从第二刀开始要注意防止走刀至终点时背吃刀量的突增。
4、“让刀”时刀补值的确定
对于薄壁工件,尤其是难切削材料的薄壁工件,切削时“让刀”现象严重,导致所车削工件尺寸发生变化,一般是外圆变大,内孔变小。
“让刀”主要是由工件加工时的弹性变形引起,“让刀”程度与切削时的背吃刀量密切相关。采用“等背吃刀深度法”,用刀补值作小范围调整,以减少“让刀”对加工精度的影响。
5、车削时的断屑问题
数控车削是自动化加工,如果刀具的断屑性能太差,将严重妨碍加工的正常进行。为解决这一问题,首先应尽量提高刀具本身的断屑性能,其次应合理选择刀具的切削用量,避免产生妨碍加工正常进行的条带形切屑。
数控车削中,理想的切屑是长度为50——150mm,直径不大的螺卷状切屑,或宝塔形切屑,它们能有规律地沿一定方向排除,便于收集和清除。如果断屑不理想,必要时可在程序中安排暂停来强迫断屑,还可以使用断屑台来加强断屑效果。
使用上压式的机夹可转位刀片时,可用压板同时将断屑台和刀片一起压紧:车内孔时,则可采用刀具前刀面朝下的切削方式改善排屑。
6、可转位刀具刀片形状的选择
与普通机床加工方法相比,数控加工对刀具提出了更高的要求,不仅需要刚性好、精度高,而且要求尺寸稳定,耐用度高,断屑和排屑性能好:同时要求安装调整方便,这样来满足数控机床高效率的要求。数控机床上所选用的刀具常采用适应高速切削的刀具材料(如高速钢、超细粒度硬质合金)并使用可转位刀片。
数控车削中广泛采用机夹可转位刀具,它是提高数控加工生产率,保证产品质量的重要手段。可转位车刀刀片种类繁多,使用zui广的是菱形刀片,其次是三角形刀片、圆形刀片及切槽刀片。菱形刀片按其菱形锐角不同有80°、55°和35°三类。
A、80°菱形刀片刀尖角大小适中,刀片既有较好的强度、散热性和耐用度,又能装配成主偏角略大于90°的刀具,用于端面、外圆、内孔、台阶的加工。同时,这种刀片的可夹固性好,可用刀片底面及非切削位置上的80°刀尖角的相邻两侧面定位,定位方式可靠,且刀尖位置精度仅与刀片本身的外形尺寸精度相关,转位精度较高,适合数控车削中心。
B、35°菱形刀片因其刀尖角小,干涉现象少,多用于车削工件的复杂型面或开挖沟槽。
7、切槽的走刀路线
较深的槽型,在数控车床上常用切槽刀加工,如果刀宽等于要求加工的槽宽,则切槽刀一次切槽刀位,若以较窄的切槽刀加工较宽的槽型,则应分多次切入。
合理的切削路线是:先切中间,再切左右。因为刀刃两侧的圆角半径通常小于工件槽底和侧壁的转接圆角半径,左右两刀切下时,当刀具接近槽底,需要各走一段圆弧。如果中间的一刀不提前切削,就不能为这两段圆弧的走刀创造必要的条件。即使刀刃两侧圆角半径与工件槽底两侧的圆角半径一致,仍以中间先切一刀为好,因这一刀切下时,刀刃两侧的负荷是均等的,后面的两刀,一刀是左侧负荷重,一刀是右侧负荷重,刀具的磨损还是均匀的。
机夹式的切槽刀不宜安排横走刀,只宜直切。